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Abstract

The pure P-wave equation for modeling and migration
in tilted transversely isotropic (TTI) media has
attracted more and more attention in imaging seismic
data with anisotropy. The desirable feature is that
it is absolutely free of shear-wave artifacts and
the consequent alleviation of numerical instabilities
generally suffered by some systems of coupled
equations. However, due to several forward-backward
Fourier transforms in wavefield updating at each time
step, the computational cost is significant, and thereby
hampers its prevalence. We propose to use a hybrid
pseudospectral (PS) and finite-difference (FD) scheme
to solve the pure P-wave equation. In the hybrid
solution, most of the cost-consuming wavenumber
terms in the equation are replaced by inexpensive
finite-difference operators, which in turn accelerates
the computation and reduces the computational cost.
To demonstrate the benefit in cost saving of the
new scheme, 2D and 3D reverse-time migration (RTM)
examples using the hybrid solution to the pure P-wave
equation are carried out, and respective runtimes are
listed and compared. Numerical results show that the
hybrid strategy demands less computation time and
is faster than using the pseudospectral method alone.
Furthermore, this new TTI RTM algorithm with the
hybrid method is less computationally expensive than
that with the finite-difference solution to conventional
TTI coupled equations.

Introduction

Various methods for modeling anisotropic acoustic seismic
waves (Alkhalifah, 1998; Zhou et al., 2006a; Du et al.,
2008) as well as wavefronts and rays (Bos and Slawinski,
2010; Epstein et al., 2012) have been proposed and
developed, especially for vertical transversely isotropic
(VTI) and tilted transversely isotropic (TTI) media. In
general, we can divide those methods into two broad
categories: methods that suffered from shear-wave
artifacts, usually known as coupled equations where P
and shear-wave are coupled together (Alkhalifah, 2000;
Zhou et al., 2006a,b; Fletcher et al., 2009; Fowler et al.,
2010; Duveneck and Bakker, 2011); and pure P-wave
(or decoupled) equations which are free of shear-wave

artifacts (Etgen and Brandsberg-Dahl, 2009; Liu et al.,
2009; Chu et al., 2011; Pestana et al., 2012; Zhan et al.,
2012).

The pure P-wave equation in the system of decoupled
equations of Zhan et al. (2012) is in the wavenumber
domain, and at each time step it requires eight fast
Fourier transforms (FFTs) for 2D, and twenty-two FFTs
for 3D. This imposes an unrealistic demand for practical
migration of large-scale 3D field seismic data sets. In
the work presented below, we follow the same derivations
of Pestana et al. (2012) and Zhan et al. (2012), but
reorganize and rewrite the wavenumber domain equation
in a compact way for efficient computation. After some
algebraic manipulations, it still requires eight FFTs per time
step for 2D computation with the new formulation, but the
number of FFTs needed per time step for 3D is reduced
from twenty-two to fourteen.

To further reduce the computational cost introduced by
numerous FFTs, we propose a hybrid pseudospectral and
finite-difference scheme to evaluate the equation by using
the relation between the spatial derivative and the operator
in the wavenumber domain. Both 2D and 3D reverse-time
migration (RTM) examples with the new hybrid algorithm
are tested and demonstrated to validate the uplift in
computational efficiency.

Equations

Isotropic wave equation

The constant-density acoustic wave equation in isotropic
media is

∂ 2u(~x, t)
∂ t2

= L2u(~x, t), (1)

where u(~x, t) is the pressure wavefield at spatial location~x=
(x,y,z) and time t; L2 = v2(~x)—2, where v(~x) is the P-wave
velocity in the medium, and —2 is the Laplacian defined as
—2 = ∂ 2

x + ∂ 2

y + ∂ 2

z . An efficient numerical solution of the
wave equation on a discrete grid is our main interest. To
solve the discretized version of equation 1, we approximate
the temporal (left) and spatial (right) derivatives in the
equation, where the time derivative is approximated by a
second-order finite-difference approximation

u(~x, t +Dt) = 2u(~x, t)�u(~x, t �Dt)�Dt2


�L2u(~x, t)

�
. (2)

Here Dt denotes the length of a discrete time step.

The pseudospectral method (Reshef et al., 1988) is
known as a highly accurate scheme for approximating the
Laplacian operator. In doing so, the numerical errors
in the solution of the wave equation are only dominated
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by the temporal discretization. For the isotropic case,
the �L2 operator in equation 2 can be expressed in the
wavenumber domain

�L2 = v2

v

✓
k2

x + k2

y + k2

z

◆
= v2

v(k
2

r + k2

z ) = v2

vk2

r , (3)

where vv is the velocity of a wave traveling vertically
along the axis of symmetry; kx, ky and kz are the spatial
wavenumbers in the x, y and z directions, respectively;
k2

r = k2

x + k2

y , and k2

r = k2

x + k2

y + k2

z .

VTI pure P-wave equation

In the case of VTI, based on Harlan (1995) and later
rediscovered by Etgen and Brandsberg-Dahl (2009),
Crawley et al. (2010), Pestana et al. (2012) and Zhan et al.
(2012) where they started from the exact phase velocity
expression for VTI media, equation 3 becomes

�L2 = v2

vk2

z + v2

hk2

r +

✓
v2

n � v2

h

◆
k2

r k2

z

k2

r
. (4)

Here, vn = vv
p

1+2d and vh = vv
p

1+2e represent the
normal moveout (NMO) velocity and the P-wave velocity
in the horizontal direction, respectively; d and e are the
Thomsen (1986) anisotropy parameters.

The resulting anisotropic wave equation derived in this way
is known as the pure P-wave or decoupled equation, where
the P-wave and shear-wave components are completely
separated and there are no spurious shear-wave artifacts
in the P-wave simulation.

TTI pure P-wave equation

A similar expression for TTI media can be deduced from
equation 4 through variable exchanges (Zhan et al., 2012)

�L2 = v2

vk2

z̃ + v2

hk2

r̃ +

✓
v2

n � v2

h

◆
k2

r̃ k2

z̃

k2

r
, (5)

where k2

r̃ = k2

x̃ +k2

ỹ with kx̃, kỹ and kz̃ representing the spatial
wavenumbers in the rotated coordinate system

2

4
kx̃
kỹ
kz̃

3

5=

2

4
cosq cosf cosq sinf sinq
�sinf cosf 0

�sinq cosf �sinq sinf cosq

3

5

2

4
kx
ky
kz

3

5 . (6)

Here q and f are dip and azimuth, and the following
relation holds

k2

x̃ + k2

ỹ + k2

z̃ = k2

x + k2

y + k2

z . (7)

In the case of elliptical anisotropy where e = d (i.e., vh =
vn), the last term of equation 5 with wavenumbers in the
denominator disappears. Therefore, the first two terms in
equation 5 represent the properties of elliptical anisotropy,
while the last term compensates for anelliptical anisotropic
effects due to the rotation of the symmetry axis.

According to the rotation matrix 6, and denoting Gx =
sinq cosf , Gy = sinq sinf and Gz = �cosq , we can rewrite
kz̃ in the rotated system in terms of kx, ky and kz

kz̃ = �
✓

kx sinq cosf + ky sinq sinf � kz cosq
◆

= �
✓

kxGx + kyGy + kzGz

◆
. (8)

Hence the three wavenumber terms in equation 5 can be
computed in the following order

k2

z̃ = k2

x Gxx + k2

y Gyy + k2

z Gzz

+2

✓
kxkyGxy + kykzGyz + kxkzGxz

◆
=V, (9a)

k2

r̃ = k2

r �V = H, (9b)

k2

r̃ k2

z̃

k2

r
=


k2

x

k2

r
Gxx +

k2

y

k2

r
Gyy +

k2

z

k2

r
Gzz

+2

✓
kxky

k2

r
Gxy +

kykz

k2

r
Gyz +

kxkz

k2

r
Gxz

◆�
H = T, (9c)

where Gi j = GiG j; V , H and T are differential operators in
the wavenumber domain that operate along the symmetry
axis direction, the symmetry plane perpendicular to the
symmetry axis, and the tilted direction, respectively.

Numerical Implementations

Pseudospectral scheme

The pseudospectral method is proposed by Kosloff
and Baysal (1982), which uses Fourier transformation,
multiplication by ik in the wavenumber domain, and inverse
Fourier transformation back to the spatial domain to
compute the spatial derivatives. Differential operators V , H
and T in equation 9 are written in the wavenumber domain
and are easily evaluated there with the pseudospectral
method. Meanwhile, as in the pseudospectral method,
performing the operations in the wavenumber domain
guarantees that it will not suffer from numerical dispersion.

Substituting equations 5 and 9 into equation 2, we write the
TTI pure P-wave equation as

u(~x, t +Dt) = 2u(~x, t)�u(~x, t �Dt)

� Dt2

⇢
v2

vV + v2

hH +(v2

n � v2

h)T
�

u(~x, t)
�

= u(~x, t)�u(~x, t �Dt)

� Dt2

⇢
v2

vF
�1


VF [u(~x, t)]

�
+ v2

hF
�1


HF [u(~x, t)]

�

+ (v2

n � v2

h)F
�1


TF [u(~x, t)]

��
, (10)

where F and F�1 are forward and inverse FFTs,
respectively.

From the above equations, we can see that at each time
step of a 3D simulation, the evaluation of the differential
operator V demands at least a 3D forward FFT of the
wavefield plus six 3D inverse FFTs. A similar analysis
applies to the differential operator T as well. Therefore,
a total of fourteen 3D FFTs are required to simulate the
pure P-wave wavefield at each time step in a TTI medium.
When it comes to 2D, all ky terms are eliminated, and thus
only eight 2D FFTs are needed.

Hybrid pseudospectral/finite-difference scheme

During each time step, the TTI pure P-wave computation in
equation 10 requires two forward FFTs and twelve inverse
FFTs, which is computationally intensive. By revisiting
equation 9, we find that due to the appearance of the
wavenumbers in the denominators, equation 9c must be
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evaluated using the pseudospectral method and it would
be difficult to derive pure finite-difference operators that
correspond to the six right-hand-side terms. However,
there are no such terms in equations 9a and 9b. To greatly
reduce the computation cost while avoiding spurious
shear-wave artifacts as well as numerical instabilities, we
propose a hybrid pseudospectral/finite-difference scheme
to evaluate the TTI pure P-wave equation given in
equation 10. That is, transforming equations 9a and 9b
using the relations kx $�i ∂

∂x , ky $�i ∂
∂y , kz $�i ∂

∂ z yields

k2

z̃ $�


∂ 2

∂x2

Gxx +
∂ 2

∂y2

Gyy +
∂ 2

∂ z2

Gzz

+2

✓
∂ 2

∂x∂y
Gxy +

∂ 2

∂y∂ z
Gyz +

∂ 2

∂x∂ z
Gxz

◆�
=V 0, (11a)

k2

r̃ $�(
∂ 2

∂x2

+
∂ 2

∂y2

+
∂ 2

∂ z2

)�V 0 = H 0, (11b)

where V 0 and H 0 can be approximated by finite-difference
operators applied along the symmetry axis and symmetry
plane, respectively. Spatial derivatives in the above
equation can be cheaply computed using a second, fourth
or higher order finite-difference scheme instead of using
FFTs back and forth.

Although the wavenumber terms in equation 9c can not all
be replaced by corresponding finite-difference operators,
they could be partially approximated as follows

k2

r̃ k2

z̃

k2

r
=


kx

kx

k2

r
Gxx + ky

ky

k2

r
Gyy + kz

kz

k2

r
Gzz

+2

✓
ky

kx

k2

r
Gxy + kz

ky

k2

r
Gyz + kx

kz

k2

r
Gxz

◆�
H

=


(kxGxx +2kyGxy)

kx

k2

r
+(kyGyy +2kzGyz)

ky

k2

r

+(kzGzz +2kxGxz)
kz

k2

r

�
H

$
✓

∂
∂x

Gxx +2

∂
∂y

Gxy

◆
�ikx

k2

r

+

✓
∂
∂y

Gyy +2

∂
∂ z

Gyz

◆
�iky

k2

r
+

✓
∂
∂ z

Gzz +2

∂
∂x

Gxz

◆
�ikz

k2

r

�
H

= T 0. (11c)

Notice that the number of wavenumber terms in
equation 11c is reduced from six to three. And T 0 can now
be approximated by finite-difference operators as well as
V 0 and H 0.

Therefore, the resulting hybrid solution to the TTI pure P-
wave equation becomes

u(~x, t +Dt) = 2u(~x, t)�u(~x, t �Dt)

� Dt2


v2

vV 0+ v2

hH 0+(v2

n � v2

h)T
0
�

u(~x, t). (12)

Noticeably, the proposed hybrid strategy only requires four
(one forward and three inverse) 3D FFTs per time step in
simulating a pure P-wave propagation in a 3D TTI medium.
For a 2D model, the number of FFTs reduces to three per
time step with the hybrid method.

Comparison of two schemes

The most computationally intensive parts in solving the TTI
pure P-wave equation are the FFT calculations, therefore
we need to count and compare the total number of FFTs
in each scheme. Table 1 displays the number of FFTs
in modeling the TTI wavefield at a time step with the
pure P-wave equation by the standard pseudospectral
scheme and the new hybrid scheme. Obviously, the
number of FFTs using the hybrid method is reduced
by more than half in comparison with that using the
pseudospectral method, which indicates that the hybrid
algorithm is more computationally efficient compared to
the standard pseudospectral scheme. Nevertheless, the
disadvantage of the hybrid scheme is that it is no longer as
accurate as the standard pseudospectral scheme.

Table 1: Number of FFTs per time step in simulating the TTI
wavefield: pseudospectral scheme versus hybrid scheme.

``````````̀method
dimension 2D 3D

PS 8 14
Hybrid 3 4

Accuracy comparison

For the proposed hybrid pseudospectral/finite-difference
method, the costs of derivative calculations are reduced
at the expense of the precision, as well as the accuracy of
the solution, because some of the wavenumber operators
are substituted by finite-difference approximations. To
demonstrate the consequent accuracy loss, we conduct a
2D modeling test on a simple 5-layer TTI model. Figure 1
displays the model parameters that used in this test. The
spacial interval of the computational grid is 10 m, and the
maximum frequency of the source wavelet is 30 Hz.

First, equation 10 using the standard pseudospectral
method is implemented. Then equation 12 using the
hybrid method is computed, where the spatial derivatives
in equations 11a, 11b, and 11c are approximated and
calculated using second, fourth and eighth-order centered
finite-difference schemes from Taylor series expansions,
respectively. To check the amplitude differences, three
wiggle traces at zero/middle/far offsets computed using
different methods are plotted and compared in Figure 2.
As we can see from Figure 2, amplitudes computed
from the pseudospectral method and the hybrid method
with the eighth-order finite-difference scheme are perfectly
matched. And the computational costs of these two
methods are almost equivalent. When the fourth-order
finite-difference scheme is used, all major amplitudes from
shallow to deep are still well matched to the pseudospectral
result, except that some tiny discrepancies start to appear
due to numerical dispersion. However, the runtime is
reduced by half. A more compact second-order finite-
difference scheme may further improve the computational
efficiency, however, both the amplitude discrepancies and
phase errors are maximized due to the strong dispersive
behavior associated with smaller stencils.

According to the above analysis, in latter numerical
examples, the fourth-order finite-difference scheme is
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chosen to compute spatial derivatives in the hybrid method
in terms of accuracy and efficiency.
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Figure 1: Anisotropic model parameters used in the
accuracy test.
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Figure 2: Three traces computed from the 2D 5-layer TTI
model are displayed in wiggle mode. (a) compares the
first (strongest) reflection event, while (b) compares lower
(weak) reflections.

Computation Examples

Computation examples associated with the BP 2D TTI
model as well as a 3D salt dome model are now presented
to validate the proposed hybrid pseudospectral/finite-
difference scheme. TTI RTM algorithms with the pure P-
wave equation using both the pseudospectral method and
the hybrid method are implemented. Computational costs
of running single common-shot-gather (CSG) migration
with different approaches are demonstrated. For
comparison, standard isotropic RTM, conventional VTI
coupled equations (equations 5a and 5b of Du et al. (2008))
and TTI coupled equations (equations 2 and 3 of Fletcher
et al. (2009)) using the finite-difference scheme are also
implemented and compared.

2D example

The grid size of the computational 2D domain is 1001

grid points in Z and 1061 grid points in X , and a total

number of 12267 time steps is computed for both forward
propagation and back propagation in migrating a CSG. The
computational costs for different RTM strategies running on
a 12-core Intel Xeon computing node are listed in Table 2,
and the corresponding histogram is displayed in Figure 3.

Table 2: 2D 1-shot RTM runtime comparison using different
schemes.

method 2D Runtime (mins)
PPPPPPPmedia FD PS Hybrid

Isotropic 1.9 16.4 �
VTI 9.2 28.0 �
TTI 68.7 94.4 65.5
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Figure 3: Histogram comparison of the 2D RTM runtimes.

From the runtime comparison, we see that a transfer from
isotropy to anisotropy complicates the RTM algorithm by
taking into account two or more anisotropic parameters,
which results in gradually increasing computational costs
with increasing anisotropic complexities. We also notice
that the standard pseudospectral method costs much more
than the conventional finite-difference approach due to the
introduced FFTs for better accuracy. However, by solving
the TTI pure P-wave equation in a hybrid method, the RTM
cost per shot (24534 time steps in total) is reduced from
94.4 mins to 65.5 mins with the pseudospectral method,
where a saving of 31% in computational cost is achieved.
And it is even less expensive than the finite-difference
solution for the TTI coupled equations (68.7 mins per shot),
which usually suffers from shear-wave artifacts.

A stacked TTI RTM image of all 1641 CSGs using the
hybrid solution to the pure P-wave equation is shown in
Figure 4(b)a. It is almost a perfect replication of the actual
reflectivity model as shown in Figure 4(b)b except for some
white shadows due to imperfect illuminations.

3D example

The 2D example shown above demonstrated the efficiency
of the hybrid strategy. To further examine the performance
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Figure 4: TTI RTM image of the BP 2D TTI model in (a) is
compared with the actual reflectivity model in (b).

of the hybrid scheme, we test it on a 3D TTI salt dome
model.

The models shown in Figure 5 contain five major layers:
a water layer, three sedimentary layers with a salt dome
embedded in the middle center, and the salt base. The
water layer (vv=1.5 km/s) and the salt (vv=4.5 km/s) are set
to be isotropic (d=e=0, q=0

�). And the three sedimentary
layers are TTI media with vv = 2.5 km/s,3.5 km/s,4.0 km/s
(Figure 5a); d = 0.06,0.025,0.1 (Figure 5c) and e =
0.12,0.05,0.2 (Figure 5d) from shallow to deep. A simple
2.5D tilt angle model (ranges from �50

� to 50

�) was
adopted with a tilt axis normal to the salt flank (Figure 5b).
A constant f = 15

� is used in this case.

The 3D model has 201 grid points along Z, and 651 grid
points along X and Y with a uniform grid point spacing
of 20 m in all three directions. For each CSG, the 3D
RTM used a local computation grid of 301x401x401 (100
grid points padding in each direction) with a total of 4802
time steps in both the forward and backward propagation
operations. Table 3 lists the runtimes of the 3D TTI RTM
using one CSG on the 12-core computing node. The
isotropic and VTI RTM runtime results are also presented
for comparison. These computational costs with different
RTM algorithms are then graphically illustrated in Figure 6.

Figure 5: 3D salt dome models: a) vv and b) q , c) and d)
are Thomsen’s parameters d and e. The front frame and
side frame correspond to 2D slices at Y=6.5 km and X=6.5
km, respectively.

Table 3: 3D 1-shot RTM runtime comparison using different
schemes.

method 3D Runtime (mins)
PPPPPPPmedia FD PS Hybrid

Isotropic 23.7 35.4 �
VTI 39.2 50.1 �
TTI 98.2 138.5 94.3

For the 3D model, the hybrid method is still faster than
the pseudospectral method by around 29%, this is because
more than half the number of 3D FFTs are replaced by less
expensive finite-difference calculations. Besides, just like
we saw in the 2D case, the hybrid scheme in 3D achieves
an even better computational efficiency in comparison with
the standard finite-difference solution to the TTI coupled
equations. Figure 7 displays the TTI RTM image of this 3D
salt dome model.

CONCLUSIONS

We have rewritten the TTI pure P-wave equation in a
form which reduces the number of FFTs per time step
simulation. Also, a hybrid pseudospectral/finite-difference
is proposed to solve this equation, where wavenumber
operators are replaced by inexpensive finite-difference
spatial operators. The computational costs of TTI RTM
with the hybrid method are reduced by 31% for the 2D
case and 29% for the 3D case. Therefore, the hybrid
pseudospectral/finite-difference scheme makes the TTI
pure P-wave equation more practical and realistic for
industrial-scale 3D migration problems.
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